Institutions
|
About Us
|
Help
|
Gaeilge
0
1000
Home
Browse
Advanced Search
Search History
Marked List
Statistics
A
A
A
Author(s)
Institution
Publication types
Funder
Year
Limited By:
Subject = flame speed;
6 items found
Sort by
Title
Author
Item type
Date
Institution
Peer review status
Language
Order
Ascending
Descending
25
50
100
per page
Bibtex
CSV
EndNote
RefWorks
RIS
XML
Displaying Results 1 - 6 of 6 on page 1 of 1
Marked
Mark
A comprehensive experimental and modeling study of isobutene oxidation
(2016)
Zhou, Chong-Wen; Li, Yang; O'Connor, Eoin; Somers, Kieran P.; Thion, Sébastien; Ke...
A comprehensive experimental and modeling study of isobutene oxidation
(2016)
Zhou, Chong-Wen; Li, Yang; O'Connor, Eoin; Somers, Kieran P.; Thion, Sébastien; Keesee, Charles; Mathieu, Olivier; Petersen, Eric L.; DeVerter, Trent A.; Oehlschlaeger, Matthew A.; Kukkadapu, Goutham; Sung, Chih-Jen; Alrefae, Majed; Khaled, Fathi; Farooq, Aamir; Dirrenberger, Patricia; Glaude, Pierre-Alexandre Glaude; Battin-Leclerc, Frédérique; Santner, Jeffrey; Ju, Yiguang
Abstract:
Isobutene is an important intermediate in the pyrolysis and oxidation of higher-order branched alkanes, and it is also a component of commercial gasolines. To better understand its combustion characteristics, a series of ignition delay time (IDT) and laminar flame speed (LFS) measurements have been performed. In addition, flow reactor speciation data recorded for the pyrolysis and oxidation of isobutene is also reported. Predictions of an updated kinetic model described herein are compared with each of these data sets, as well as with existing jet-stirred reactor (JSR) species measurements.IDTs of isobutene oxidation were measured in four different shock tubes and in two rapid compression machines (RCMs) under conditions of relevance to practical combustors. The combination of shock tube and RCM data greatly expands the range of available validation data for isobutene oxidation models to pressures of 50 atm and temperatures in the range 666-1715 K. Isobutene flame speeds were measur...
http://hdl.handle.net/10379/6030
Marked
Mark
A comprehensive experimental and modeling study of isobutene oxidation
(2018)
Zhou, Chong-Wen; Li, Yang; O'Connor, Eoin; Somers, Kieran P.; Thion, Sébastien; Ke...
A comprehensive experimental and modeling study of isobutene oxidation
(2018)
Zhou, Chong-Wen; Li, Yang; O'Connor, Eoin; Somers, Kieran P.; Thion, Sébastien; Keesee, Charles; Mathieu, Olivier; Petersen, Eric L.; DeVerter, Trent A.; Oehlschlaeger, Matthew A.; Kukkadapu, Goutham; Sung, Chih-Jen; Alrefae, Majed; Khaled, Fathi; Farooq, Aamir; Dirrenberger, Patricia; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Santner, Jeffrey; Ju, Yiguang
http://hdl.handle.net/10379/14536
Marked
Mark
An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements
(2019)
Zhou, Chong-Wen; Li, Yang; Burke, Ultan; Banyon, Colin; Somers, Kieran P.; Ding, Shuiti...
An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements
(2019)
Zhou, Chong-Wen; Li, Yang; Burke, Ultan; Banyon, Colin; Somers, Kieran P.; Ding, Shuiting; Khan, Saadat; Hargis, Joshua W.; Sikes, Travis; Mathieu, Olivier; Petersen, Eric L.; AlAbbad, Mohammed; Farooq, Aamir; Pan, Youshun; Zhang, Yingjia; Huang, Zuohua; Lopez, Joseph; Loparo, Zachary; Vasu, Subith S.; Curran, Henry J.
Abstract:
Ignition delay times for 1,3-butadiene oxidation were measured in five different shock tubes and in a rapid compression machine (RCM) at thermodynamic conditions relevant to practical combustors. The ignition delay times were measured at equivalence ratios of 0.5, 1.0, and 2.0 in 'air' at pressures of 10, 20 and 40 atm in both the shock tubes and in the RCM. Additional measurements were made at equivalence ratios of 0.3, 0.5, 1.0 and 2.0 in argon, at pressures of 1, 2 and 4 atm in a number of different shock tubes. Laminar flame speeds were measured at unburnt temperatures of 295 K, 359 K and 399 K at atmospheric pressure in the equivalence ratio range of 0.6-1.7, and at a pressure of 5 atm at equivalence ratios in the range 0.6-1.4. These experimental data were then used as validation targets for a newly developed detailed chemical kinetic mechanism for 1,3-butadiene oxidation.A detailed chemical kinetic mechanism (AramcoMech 3.0) has been developed to describe the combus...
http://hdl.handle.net/10379/14784
Marked
Mark
An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements
(2016)
Burke, Sinéad M.; Burke, Ultan; Mc Donagh, Reuben; Mathieu, Olivier; Osorio, Irmis; Kee...
An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements
(2016)
Burke, Sinéad M.; Burke, Ultan; Mc Donagh, Reuben; Mathieu, Olivier; Osorio, Irmis; Keesee, Charles; Morones, Anibal; Petersen, Eric L.; Wang, Weijing; DeVerter, Trent A.; Oehlschlaeger, Matthew A.; Rhodes, Brandie; Hanson, Ronald K.; Davidson, David F.; Weber, Bryan W.; Sung, Chih-Jen; Santner, Jeffrey; Ju, Yiguang; Haas, Francis M.; Dryer, Frederick L.
Abstract:
Journal article
Experimental data obtained in this study (Part II) complement the speciation data presented in Part I, but also offer a basis for extensive facility cross-comparisons for both experimental ignition delay time (IDT) and laminar flame speed (LFS) observables.To improve our understanding of the ignition characteristics of propene, a series of IDT experiments were performed in six different shock tubes and two rapid compression machines (RCMs) under conditions not previously studied. This work is the first of its kind to directly compare ignition in several different shock tubes over a wide range of conditions. For common nominal reaction conditions among these facilities, cross-comparison of shock tube IDTs suggests 20-30% reproducibility (2 sigma) for the IDT observable. The combination of shock tube and RCM data greatly expands the data available for validation of propene oxidation models to higher pressures (2-40 atm) and lower temperatures (750-1750 K).Propene f...
http://hdl.handle.net/10379/6123
Marked
Mark
An experimental and modeling study of propene oxidation. part 2: ignition delay time and flame speed measurements
(2018)
Burke, Sinéad M.; Burke, Ultan; Mc Donagh, Reuben; Mathieu, Olivier; Osorio, Irmis; Kee...
An experimental and modeling study of propene oxidation. part 2: ignition delay time and flame speed measurements
(2018)
Burke, Sinéad M.; Burke, Ultan; Mc Donagh, Reuben; Mathieu, Olivier; Osorio, Irmis; Keesee, Charles; Morones, Anibal; Petersen, Eric L.; Wang, Weijing; DeVerter, Trent A.; Oehlschlaeger, Matthew A.; Rhodes, Brandie; Hanson, Ronald K.; Davidson, David F.; Weber, Bryan W.; Sung, Chih-Jen; Santner, Jeffrey; Ju, Yiguang; Haas, Francis M.; Dryer, Frederick L.
http://hdl.handle.net/10379/10608
Marked
Mark
Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures
(2016)
Donohoe, Nicola; Heufer, Alexander; Metcalfe, Wayne K.; Curran, Henry J.; Davis, Mariss...
Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures
(2016)
Donohoe, Nicola; Heufer, Alexander; Metcalfe, Wayne K.; Curran, Henry J.; Davis, Marissa L.; Mathieu, Olivier; Plichta, Drew; Morones, Anibal; Petersen, Eric L.; Güthe, Felix
Abstract:
New experimental ignition delay time data measured in both a shock tube and in a rapid compression machine were taken to determine the increase in reactivity due to the addition of hydrogen to mixtures of methane and natural gas. Test conditions were determined using a statistical design of experiments approach which allows the experimenter to probe a wide range of variable factors with a comparatively low number of experimental trials. Experiments were performed at 1, 10, and 30 atm in the temperature range 850-1800 K, at equivalence ratios of 0.3, 0.5, and 1.0 and with dilutions ranging from 72% to 90% by volume. Pure methane- and hydrogen-fueled mixtures were prepared in addition to two synthetic 'natural gas'-fueled mixtures comprising methane, ethane, propane, n-butane and n-pentane, one comprising 81.25/10/5/2.511.25% while the other consisted of 62.5/20/10/5/2.5% C-1/C-2/C-3/C-4/Cs components to encompass a wide range of possible natural gas compositions. A heated, ...
http://hdl.handle.net/10379/6111
Displaying Results 1 - 6 of 6 on page 1 of 1
Bibtex
CSV
EndNote
RefWorks
RIS
XML
Peer Review Status
Peer-reviewed (4)
Unknown (2)
Year
2019 (1)
2018 (2)
2016 (3)
built by Enovation Solutions