Institutions | About Us | Help | Gaeilge
rian logo

Go Back
Disentangling the neural correlates of attention decrement: from Cognitive Neuroscience to Cognitive Engineering
Derosiere, Gerard
Focused attention represents a high-level cognitive function enabling humans to selectively facilitate specific actions and perceptions. In a world full of choices of action, and of perceptual possibilities, focused attention appears to be a vital component of human cognition. One observation however, is worth making: human-beings are unable to maintain stable states of focused attention indefinitely. This inability manifests during sustained attention tasks with the progressive occurrence of sensory-motor deficiencies with time-on-task. The phenomenon - called attention decrement - is characterized by increases in motor impulsivity and in response times to imperative events, and by a reduction in perceptual sensitivity. So far, the neural underpinnings of attention decrement have not been fully elucidated and this lack of knowledge is clearly palpable within two disciplinary fields: Cognitive Neuroscience and Cognitive Engineering. In Cognitive Neuroscience, the associated question is why are human-beings unable to maintain an optimal sensory-motor performance during sustained attention tasks? In Cognitive Engineering, the lack of a complete scientific understanding of attentional issues impacts the development of efficient passive Brain- Computer interfaces (BCI), capable of detecting the occurrence of potentially dangerous attention decrements during the performance of everyday activities. Both issues have been addressed in this thesis. In terms of Cognitive Neuroscience, I demonstrate that sustaining focused attention on a visual stimulation rapidly leads to an inhibition of the visual cortices. This sensory inhibition can be causally related to the lack of changes in perceptual stimulation typically characterizing sustained attention tasks. While the mechanism may be beneficial during visual search tasks as it helps humans avoid processing the same stimulus, the same object, the same location several times, it can lead to the occurrence of sensory deficiencies when sustained attention is required. As such, the sensory inhibition provides a compelling explanation as to the decrease in perceptual sensitivity and to the increase in reaction time that typify attention decrement. I show in a second study that attention decrement is associated with an increase in the activity of motor- and attention-related neural structures (i.e., cortico-spinal tract, primary motor, prefrontal and right parietal cortices). This excessive engagement reflects a compensatory process occurring in response to the sensory disengagement already highlighted and to the related degradation of the quality of perceptual representations. It is notable that the excessive engagement of the motor neural structures with timeon- task provides a potential explanation for the increase in motor impulsivity typifying attention decrement. In terms of application of these new findings, I investigated the potential of exploiting these neural correlates of attention decrement to discriminate between two different attentional states (i.e., with or without attention decrement) through a passive BCI system. To do so, we applied supervised classification analyses on near-infrared spectroscopy signals reflecting the hemodynamic activity of prefrontal and parietal cortices as recorded during a sustained attention task. We achieved relatively promising classification performance results which bode well for the future development of passive BCI. When considered together, the results described in this thesis contribute towards a better understanding of the neural correlates of attention decrement and demonstrate how this novel knowledge can be exploited for the future development of systems which may enable a reduction in accidents and human error-driven incidents in real world environments.
Keyword(s): Electronic Engineering; sustained attention; motor attention; sensory attention; passive brain-computer interfaces; attention decrement
Publication Date:
Type: Doctoral thesis
Peer-Reviewed: No
Institution: Maynooth University
Citation(s): Derosiere, Gerard (2014) Disentangling the neural correlates of attention decrement: from Cognitive Neuroscience to Cognitive Engineering. PhD thesis, National University of Ireland Maynooth.
File Format(s): other
Related Link(s):
First Indexed: 2015-02-12 05:28:21 Last Updated: 2017-04-25 13:43:52