Institutions | About Us | Help | Gaeilge
rian logo


Mark
Go Back
Examination of formulation and process factors on the characteristics of fast dissolving and fast disintegrating tablets manufactured by a direct compression process.
Pabari, Ritesh M
<p>Oral dosage forms are the safest and most convenient dosage forms and of these tablets are the most popular with patients because of their portability, ease and convenience of dose intake and with manufacturers because of their simple and low cost manufacturing process. Fast disintegrating dissolving tablets (FDDTs), a more recent innovation, have gained a great deal of attention particularly for use in various patient groups such as the paediatric, geriatric, travelling patients and patients having dysphagia. The name "fastdissolving" indicates that the tablets dissolve fast in the mouth without the aid of water, allowing ease of dose intake by the patients (Banker and Rhodes, 2002).</p> <p>To meet the goal of fast disintegration in the mouth generally in less than 1 minute, early techniques developed for the production of FDDTs were based on freeze drying or lyophilization (Seager, 1998), molding at low pressure (Makino et al., 1998), sublimation (Koizumi et al., 1997) and tableting followed by humidity and temperature treatment (Mizumoto et al., 1996). A number of these techniques have been commercialized by Cardinal health (Zydis®), Janssen Pharmaceutica (Quicksolv®), Pharmalyoc (Lyod®), Yamanouchi (Wowtab®). Limitations of these technologies and of the resulting products include complex processing, high cost, tablets with low mechanical strength requiring specialised packaging and low dose content of these tablets.</p> <p>Subsequently, conventional tableting technologies have been examined and adapted to produce FDDTs. These are based on either granulation or direct compression, and to produce tablets with fast disintegration properties, effervescent excipients and osmotic agents are used and/or tablets are compressed at a low compression force, which results in tablets of low hardness and hence high disintegration properties. Examples of such technologies include Orasolv®, Durasolv® by Cima labs, Advatab® by Eurand.</p> <p>In the present thesis, a relatively simple direct compression technique was developed in order to prepare FDDTs with high mechanical strength while keeping the attributes of fast disintegration.</p> <p>To allow for the fast disintegration qualities of the tablets, sugar alcohol based and cellulose based direct compression bases (DCBs) which are either highly water-soluble or water dispersible in combination with one or more disintegrants with differing disintegration mechanism on the mechanical strength and disintegration time of tablets was studied. The addition of hydrophobic and hydrophilic lubricants on the mechanical strength and disintegration characteristics of the tablets was also examined.</p> <p>The influence of various tableting process variables on the characteristics of the tablets was also studied. Compression force is known to affect the hardness and tensile strength of the tablets as well as the tablet disintegration time (Tye et al., 2004). The influence of increasing compression force from 10 to 20kN on the mechanical strength and DT of the tablets at various tablet diameters, shapes and weights was investigated.</p> <p>The hardness and tensile strength of tablets formulated using the cellulose based filler, Prosolv®, was found to be higher than tablets formulated using the sugar based fillers including sorbitol and Mannitol 200 (M200; mannitol). This was related to the better binding properties of microcrystalline cellulose (MCC) component of the Prosolv filler®. Only Mannitol 200, Prosolv@ and sorbitol tablets resulted in tablets which were not friable showing a percent weight loss of less than 1 % during the friability test.</p> <p>The DT of the FDDTs formulated increased in the order of fillers used; mannogem > Mannitol 300 > Prosolv® > Mannitol 200 > Ludipress® > Sorbitol. The lowest DT of 5.67 seconds was observed for Mannogem FDDTs while the highest DT of > 2 minutes was observed for sorbitol.</p> <p>Tablets containing either Prosolv® or Mannitol 200 (M200) as filler showed a fast DT of below 20 seconds and harder than Ludipress® or any other mannitols therefore were chosen for further study to evaluate the influence of the type of disintegrant on tablet characteristics.</p> <p>The disintegration time of the tablets was found to be a function of the type of disintegrant used. For tablets containing M200, osmotic agents were found to result in faster disintegration of the tablets, while for tablets formulated with Prosolv®, the superdisintegrants resulted in faster disintegration.</p> <p>For the M200 based tablets, the disintegration time was found to increase in the order of sodium citrate < calcium silicate < Luquasorb® < Kollidon CLSF < citric acid < SSG. M200 tablets containing SSG produced tablets with the highest disintegration time of <strong>36.67 </strong>seconds. On...
Keyword(s): Chemistry; Pharmaceutical; Dosage Forms; Tablets; Medicine and Health Sciences
Publication Date:
2010
Type: Doctoral thesis
Peer-Reviewed: No
Institution: Royal College of Surgeons in Ireland
Citation(s): Pabari RM. Examination of formulation and process factors on the characteristics of fast dissolving and fast disintegrating tablets manufactured by a direct compression process [PhD Thesis]. Dublin: Royal College of Surgeons in Ireland; 2010.
Supervisor(s): Dr Zebunnissa Ramtoola
Related Link(s): http://epubs.rcsi.ie/phdtheses/63
First Indexed: 2015-07-31 15:37:13 Last Updated: 2018-02-13 07:19:05