Institutions | About Us | Help | Gaeilge
rian logo


Mark
Go Back
The microbiome regulates amygdala-dependent fear recall
Hoban, Alan E.; Stilling, Roman M.; Moloney, Gerard; Shanahan, Fergus; Dinan, Timothy G.; Clarke, Gerard; Cryan, John F.
The amygdala is a key brain region that is critically involved in the processing and expression of anxiety and fear-related signals. In parallel, a growing number of preclinical and human studies have implicated the microbiome-gut-brain in regulating anxiety and stress-related responses. However, the role of the microbiome in fear-related behaviours is unclear. To this end we investigated the importance of the host microbiome on amygdala-dependent behavioural readouts using the cued fear conditioning paradigm. We also assessed changes in neuronal transcription and post-transcriptional regulation in the amygdala of naive and stimulated germfree (GF) mice, using a genome-wide transcriptome profiling approach. Our results reveal that GF mice display reduced freezing during the cued memory retention test. Moreover, we demonstrate that under baseline conditions, GF mice display altered transcriptional profile with a marked increase in immediate-early genes (for example, Fos, Egr2, Fosb, Arc) as well as genes implicated in neural activity, synaptic transmission and nervous system development. We also found a predicted interaction between mRNA and specific microRNAs that are differentially regulated in GF mice. Interestingly, colonized GF mice (ex-GF) were behaviourally comparable to conventionally raised (CON) mice. Together, our data demonstrates a unique transcriptional response in GF animals, likely because of already elevated levels of immediate-early gene expression and the potentially underlying neuronal hyperactivity that in turn primes the amygdala for a different transcriptional response. Thus, we demonstrate for what is to our knowledge the first time that the presence of the host microbiome is crucial for the appropriate behavioural response during amygdala-dependent memory retention.
Keyword(s): Neuronal circuits; Stress-response; Brain; Anxiety; Memory; Microrna; Mice; Expression; Disorders; Behavior
Publication Date:
2018
Type: Journal article
Peer-Reviewed: Yes
Language(s): English
Institution: University College Cork
Funder(s): Science Foundation Ireland; Health Research Board; Enterprise Ireland
Citation(s): Hoban, A. E., Stilling, R. M., Moloney, G., Shanahan, F., Dinan, T. G., Clarke, G. and Cryan, J. F. (2017) 'The microbiome regulates amygdala-dependent fear recall', Molecular Psychiatry, 23, pp. 1134–1144. doi: 10.1038/mp.2017.100
Publisher(s): Nature Publishing Group
File Format(s): application/pdf
Related Link(s): https://www.nature.com/articles/mp2017100
First Indexed: 2018-06-16 06:30:35 Last Updated: 2018-07-13 06:30:59