Institutions | About Us | Help | Gaeilge
rian logo


Mark
Go Back
Fast and robust quantum control based on Pauli blocking
Dowdall, Tom; Benseny, Albert; Busch, Thomas; Ruschhaupt, Andreas
Coherent quantum control over many-particle quantum systems requires high-fidelity dynamics. One way of achieving this is to use adiabatic schemeswhere the system follows an instantaneous eigenstate of the Hamiltonian over time scales that do not allow transitions to other states. This, however, makes control dynamics very slow. Here we introduce another concept that takes advantage of preventing unwanted transitions in fermionic systems by using Pauli blocking: excitations from a protected ground state to higher-lying states are avoided by adding a layer of buffer fermions, such that the protected fermions cannot make a transition to higher-lying excited states because these are already occupied. This allows us to speed up adiabatic evolutions of the system. We do a thorough investigation of the technique, and demonstrate its power by applying it to high-fidelity transport, trap expansion, and splitting in ultracold-atom systems in anharmonic traps. Close analysis of these processes also leads to insights into the structure of the orthogonality catastrophe phenomenon.
Keyword(s): Fermi gases; Emission
Publication Date:
2017
Type: Journal article
Peer-Reviewed: Yes
Language(s): English
Institution: University College Cork
Citation(s): Dowdall, T., Benseny, A., Busch, T. and Ruschhaupt, A. (2017) 'Fast and robust quantum control based on Pauli blocking', Physical Review A, 96(4), 043601 (8pp). doi: 10.1103/PhysRevA.96.043601
Publisher(s): American Physical Society
File Format(s): application/pdf
Related Link(s): https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.043601
First Indexed: 2018-06-16 06:30:43 Last Updated: 2018-07-13 06:31:11