Institutions | About Us | Help | Gaeilge
rian logo

Go Back
Veritas deep observations of the dwarf spheroidal galaxy segue 1
Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Decerprit, G.; Dickherber, R.
The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant gamma-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are <sigma upsilon >(95%) (CL) less than or similar to 10(-23) cm(3) s(-1), improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses m(chi) greater than or similar to 300 GeV. The lower limits on the decay lifetime are at the level of tau(95%) (CL) greater than or similar to 10(24) s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.
Keyword(s): dark-matter annihilation; large-area telescope; gamma-ray emission; galactic-center; local group; cherenkov telescopes; empirical-models; magic telescope; upper limits; cosmic-rays
Publication Date:
Type: Journal article
Peer-Reviewed: Unknown
Institution: NUI Galway
Publisher(s): American Physical Society (APS)
First Indexed: 2019-03-23 06:50:24 Last Updated: 2019-03-23 06:50:24