Institutions | About Us | Help | Gaeilge
rian logo

Go Back
An experimental and kinetic modeling study of the oxidation of hexane isomers: Developing consistent reaction rate rules for alkanes
Kuiwen, Zhang; Banyon, Colin; Burke, Ultan; Kukkadapu, Goutham; Wagnon, Scott W.; Mehl, Marco; Curran, Henry J.; Westbrook, Charles K.; Pitz, William J.
Alkanes are key components in gasoline, jet and diesel fuels and considerably influence the combustion behavior of these fuels because of their wide range of reactivity. An improved understanding of their combustion behavior and the development of chemical kinetic models that can accurately simulate their combustion behavior are important for the development of next-generation internal-combustion and gas-turbine engines. The current work provides improved insight into oxidation mechanisms of a representative family of hydrocarbon fuels, specifically the hexane isomers: n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane. These isomers provide carbon "skeletons" ranging from straight-chained to highly-branched and provide a framework for the subsequent development of kinetic mechanisms for larger alkanes. New ignition delay times for the four branched hexane isomers were measured in a high-pressure shock tube and in a rapid compression machine, both at stoichiometric conditions (phi= 1), p =15 bar and X-O2 = 21% over temperatures from 600 to1300 K. These data were combined with previously published measurements under the same conditions for the remaining n-hexane isomer to provide a complete body of experimental data for kinetic modeling analysis. In addition, very recent experimental measurements of individual intermediate chemical species concentrations from all five hexane isomers in a jet-stirred reactor are also included and provide another family of data for further assessment of hexane isomer reactivity. Different reactivities were observed for each hexane isomer in each experimental facility, resulting from differences in their molecular structures. Consistent reaction rate rules have been applied to develop a combined detailed chemical kinetic model for all five hexane isomers. Kinetic model validation studies are reported to show that the current model reproduces well the ignition delay times of all five alkane isomers, as well as their variations in reactivity over a wide range of temperatures and other operating conditions. Equally important, these results show that it is not necessary to have a separate, different kinetic model for each isomer of a family of alkane fuels and that a single, coherent, integrated set of reaction rate classes and rules is sufficient to accurately describe combustion rates of combustion of straight-chain n-alkanes and branched-chain alkane fuels. This suggests strongly that a single set of reaction classes and rate rules should be sufficient to describe combustion kinetics of alkane fuels of any size and degree of branching. Published by Elsevier Inc. on behalf of The Combustion Institute. The work by authors at LLNL was performed under the auspices of the U.S. Department of Energy (DOE), Contract DE-AC52-07NA27344 and was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the DOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices. The research at NUIG received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no 607214 and from Science Foundation Ireland via their Principal Investigator Program through project number 15/IA/3177. 2021-05-09
Keyword(s): Hexane isomers; Detailed kinetic model; Ignition delay time; Reaction rate rules; Rapid compression machine; LOW-TEMPERATURE OXIDATION; PRESSURE RATE RULES; SHOCK-TUBE; RATE CONSTANTS; HEPTANE; IGNITION; COMBUSTION; MIXTURES; RADICALS; AUTOIGNITION
Publication Date:
Type: Journal article
Peer-Reviewed: Yes
Language(s): English
Contributor(s): U.S. Department of Energy; Seventh Framework Programme; Science Foundation Ireland
Institution: NUI Galway
Publisher(s): Elsevier
File Format(s): application/pdf
First Indexed: 2019-09-20 06:38:57 Last Updated: 2019-09-20 06:38:57