Institutions | About Us | Help | Gaeilge
rian logo


Mark
Go Back
LiveBox: a self-adaptive forensic-ready service for drones
Yu, Yijun; Barthaud, Danny; Price, Blaine A.; Bandara, Arosha K.; Zisman, Andrea; Nuseibeh, Bashar
Unmanned Aerial Vehicles (UAVs), or drones, are increasingly expected to operate in spaces populated by humans while avoiding injury to people or damaging property. However, incidents and accidents can, and increasingly do, happen. Traditional investigations of aircraft incidents require on-board ight data recorders (FDRs); however, these physical FDRs only work if the drone can be recovered. A further complication is that physical FDRs are too heavy to mount on light drones, hence not suitable for forensic digital investigations of drone ights. In this paper, we propose a self-adaptive software architecture, LiveBox, to make drones both forensic-ready and regulation compliant. We studied the feasibility of using distributed technologies for implementing the LiveBox reference architecture. In particular, we found that updates and queries of drone ight data and constraints can be treated as transactions using decentralised ledger technology (DLT), rather than a generic time-series database, to satisfy forensic tamper-proof requirements. However, DLTs such as Ethereum, have limits on throughput (i.e. transactions-per-second), making it harder to achieve regulation-compliance at runtime. To overcome this limitation, we present a self-adaptive reporting algorithm to dynamically reduce the precision of ight data without sacri cing the accuracy of runtime veri cation. Using a real-life scenario of drone delivery, we show that our proposed algorithm achieves a 46% reduction in bandwidth without losing accuracy in satisfying both tamper-proof and regulation-compliant requirements.
Keyword(s): unmanned aerial vehicles (Drones); software engineering; self-adaptive systems; forensic readiness; flight data recorders; simulators; unmanned traffic management
Publication Date:
2019
Type: Journal article
Peer-Reviewed: Yes
Language(s): English
Institution: University of Limerick
Funder(s): Science Foundation Ireland
Citation(s): IEEE Access;7, 148401-148412
http://dx.doi.org/10.1109/ACCESS.2019.2942033
Publisher(s): IEEE Computer Society
First Indexed: 2020-02-23 07:17:21 Last Updated: 2020-02-23 07:17:21